
Mathematica Moravica
Vol. 21, No. 2 (2017), 61–73

On the solutions of a second order
difference equation

R. Abo-Zeid

Abstract. In this paper, we discuss the global behavior of all solutions
of the difference equation

xn+1 =
xnxn−1

axn + bxn−1
, n ∈ N0,

where a, b are real numbers and the initial conditions x−1, x0 are real
numbers.

We determine the forbidden set and give an explicit formula for the
solutions. We show the existence of periodic solutions, under certain
conditions.

1. Introduction

In this paper, we discuss the global behavior of the difference equation

(1) xn+1 =
xnxn−1

axn + bxn−1
, n ∈ N,

where a, b are real numbers and the initial conditions x−1, x0 are real num-
bers. Results concerning rational difference equations having quadratic
terms are included in some publications such as [1]-[21] and the references
cited therein.

Using the substitution yn = 1
xn

, we can obtain the linear second order
homogeneous difference equation

(2) yn+1 = byn + ayn−1, n ∈ N
The characteristic equation of equation (2) is

(3) λ2 − bλ− a = 0.

Equation (3) has two roots λ− = b
2 −

√
b2+4a
2 and λ+ = b

2 +
√
b2+4a
2 .

The form of the solution should be according to the value of the quantity
b2 + 4a.

The following theorem [12] is useful in studying the solutions of the diffe-
rence equation (2).
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Theorem 1.1. The following statements holds:
(1) All solutions of (2) oscillates (about zero) if and only if the charac-

teristic equation has no positive roots.
(2) All solutions of (2) converge to zero if and only if max{λ1, λ2} < 1.

In order to study the solutions of the difference equation (1), we consider
the two cases:

– Case ab > 0;
– Case ab < 0.

The case ab = 0 reduces equation (1) to the first order homogeneous dif-
ference equation xn+1 = 1

bxn when a = 0, and to the second order homo-
geneous difference equation xn+1 = 1

axn−1 when b = 0, which are easy to
investigate.

2. Case ab>0

In this section we discuss the behavior of the solutions when ab > 0.

2.1. Case a > 0, b > 0. In this case, we have b2 + 4a > 0 and so the roots
λ− and λ+ are real such that λ− < 0 < b

2 < λ+. The solution of equation
(2) is

yn = c1λ
n
− + c2λ

n
+, n = −1, 0, 1, ....

Using the initials y−1 and y0, the values of c1 and c2 are

c1 =
a(y0 − y−1λ+)
(λ+ − λ−)λ+

and c2 =
a(y−1λ− − y0)
(λ+ − λ−)λ−

.

Then,

yn =
1

λ+ − λ−
[y0(λ

n+1
+ − λn+1

− ) + ay−1(λ
n
+ − λn−)], n = −1, 0, 1, ....

If we put yn = 0, we get

y0 = −a

(
λn+ − λn−

λn+1
+ − λn+1

−

)
y−1.

Hence, we conclude that, the forbidden set of equation (1) is

(4) F =

∞⋃
n=−1

{
(x0, x−1) ∈ R2 : x0 = −

1

a

(
λn+1
+ − λn+1

−
λn+ − λn−

)
x−1

}
.

The solution of equation (1) is

(5) xn =
x0x−1(λ+ − λ−)

[x−1(λ
n+1
+ − λn+1

− ) + ax0(λn+ − λn−)]
, n = −1, 0, 1, ....

Consider the set
S = F ∪D,
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where D = {(u, v) ∈ R2 : au2 + buv − v2 = 0}. Note that for (u, v) ∈ R2,
c2(u, v) = 0 implies that au2 + buv − v2 = 0.

Theorem 2.1. Assume that (x0, x−1) /∈ S and let {xn}∞n=−1 be a solution
of equation (1). Then the following statements are true.

(1) If a+ b < 1, then {xn}∞n=−1 is unbounded.
(2) If a+ b = 1, then {xn}∞n=−1 converges to 1

c2
.

(3) If a+ b > 1, then {xn}∞n=−1 converges to zero.

Proof. Let {xn}∞n=−1 be a solution of equation (1) such that (x0, x−1) /∈ S.
When a+ b < 1, we have that λ+ < 1. But |λ−| < |λ+|, then

xn =
1

c1λn− + c2λn+
=

1

λn+(c1(
λ−
λ+

)n + c2)
.

That is
xn →∞(sgn(c2)) as n→∞,

from which (1) follows.
When a+ b = 1, we have that λ+ = 1. It follows that

xn =
1

c1λn− + c2
→ 1

c2
as n→∞,

from which (2) follows.
When a+ b > 1, we have that λ+ > 1. Then

xn =
1

λn+(c1(
λ−
λ+

)n + c2)
→ 0 as n→∞,

from which (3) follows. �

Theorem 2.2. The subset

D = {(x, y) ∈ R2 : ax2 + bxy − y2 = 0}
is an invariant subset of the set S.

Proof. Let (x0, x−1) ∈ D . We show that (xn, xn−1) ∈ D for each n ∈ N .
The proof is by induction on n. For n = 0, we have that

ax20 + bx0x−1 − x2−1 = 0.

This implies that

ax0 + bx−1 =
x2−1
x0

.

Now for n = 1, we have

ax21 + bx1x0 − x20 = a
x20x

2
−1

(ax0 + bx−1)2
+ bx0

x0x−1
ax0 + bx−1

− x20

= a
x40
x2−1

+ b
x30
x−1
− x20 =

x20
x2−1

(ax20 + bx0x−1 − x2−1) = 0.
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This implies that (x1, x0) ∈ D.
Suppose that the relation is true for n = k. That is (xk, xk−1) ∈ D. Then

axk + bxk−1 =
x2k−1
xk

.

That is

ax2k+1 + bxk+1xk − x2k = a
x2kx

2
k−1

(axk + bxk−1)2
+ bxk

xkxk−1
axk + bxk−1

− x2k

= a
x4k
x2k−1

+ b
x3k
xk−1

− x2k =
x2k
x2k−1

(ax2k + bxkxk−1 − x2k−1) = 0.

Therefore, (xk+1, xk) ∈ D.
This completes the proof. �

Theorem 2.3. Assume that b = a−1 and let (x0, x−1) /∈ F . If c2 = 0, then
{xn}∞n=−1 is periodic with prime period two.

Proof. Clear that if b = a− 1, then λ− = −1. It follows that

xn =
1

c1(−1)n + c2λn+
.

But as c2 = 0, we have that x0 = −x−1 and so c1 = 1
x0
. This implies that

xn =
1

c1(−1)n
=

{ 1
c1

= x0, n even,
− 1
c1

= −x0, n odd.

This completes the proof. �

2.2. Case a < 0, b < 0. In this subsection, suppose that both a and b are
negative. If b2 + 4a > 0, the two roots λ− and λ+ are also negative such
that λ− < b

2 < λ+ < 0.

Theorem 2.4. Assume that (x0, x−1) /∈ S and let {xn}∞n=−1 be a solution
of equation (1). Then the following statements are true.

(1) If b < a− 1, then {xn}∞n=−1 is converges to zero.
(2) If b = a− 1, then we have the following:

(a) If a ≤ −1, then {xn}∞n=−1 converges to zero.
(b) If a > −1, then {xn}∞n=−1 converges to a period-2 solution.

(3) If −2
√
−a > b > a− 1, then we have the following:

(a) If a > −1, then {xn}∞n=−1 is unbounded.
(b) If a < −1, then {xn}∞n=−1 converges to zero.

Proof. Let {xn}∞n=−1 be a solution of equation (1) such that (x0, x−1) /∈ S.
When b < a− 1, we have that λ− < −1 < λ+ < 0. Then

xn =
1

λn−(c1 + c2(
λ+
λ−

)n)
→ 0 as n→∞,



R. Abo-Zeid 65

from which (1) follows.
When b = a− 1, we have that λ = −1 is a root of equation (3).
If a = −1, then λ = −1 is a repeated root and then {xn}∞n=−1 converges to
zero.
Now suppose that a 6= −1. If a < −1, then λ− = −1 and λ+ = a, from
which (2a) follows. Similarly, when a > −1, λ− = a and λ+ = −1, from
which (2b) follows.
When b > a− 1, we have either λ− < λ+ < −1 or −1 < λ− < λ+ < 0.
If a > −1, then −1 < λ− < λ+ < 0 from which (3a) follows. If a < −1,
then λ− < λ+ < −1 from which (3b) follows. This completes the proof. �

Theorem 2.5. Assume that a < 0 and b < 0 and let (x0, x−1) /∈ F . The
following statements hold:

(1) If b = a− 1, then there exist periodic solutions of prime period two.
(2) All solutions of equation (1) oscillate about zero

Proof. (1) Suppose that b = a − 1 and let (x0, x−1) /∈ F . If a > −1 let
Then

xn =
1

c1(−1)n + c2λn+
.

If c2 = 0, we have that x0 = −x−1. Then c1 = 1
x0
. This implies that

xn =
1

c1(−1)n
=

{ 1
c1

= x0, n even,
− 1
c1

= −x0, n odd.

If a < −1, then

xn =
1

c1λn− + c2(−1)n
.

If c1 = 0, then c2 = 1
x0

and therefore, {xn}∞n=−1 is periodic with
prime period two.

(2) Clear that a < 0 and b < 0 implies negative roots for equation (3).
Using Theorem (1.1), we get the result.

�

The rest of this subsection is devoted to discuss the case b2 + 4a ≤ 0.
When b2 + 4a = 0 the solution of equation (2) is

yn = c1(
b

2
)n + c2(

b

2
)nn, n = −1, 0, 1, ....

By a simple calculations, we can obtain the solution

(6) xn =
x0x−1

( b2)
n(− b

2x0n+ (1 + n)x−1)
, n = −1, 0, 1, ....

The forbidden set F of equation (1) in this case is

F =

∞⋃
n=−1

{
(x0, x−1) ∈ R2 : x0 =

2(1 + n)x−1
bn

}
.
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Similarly, when b2 + 4a < 0, the solution of equation (2) is

(7) xn =
x0x−1 sin θ

(−a)
n
2 (x−1 sin(n+ 1)θ −

√
−a(x0 sinnθ))

,

where θ = tan−1
√
−b2−4a
b ∈ ]π2 , π[.

The forbidden set F of equation (1) in this case is

F =

∞⋃
n=−1

{
(x0, x−1) ∈ R2 : x0 =

x−1
√
−b2 − 4a

−2a
(

b√
−b2 − 4a

+ cotnθ)

}
.

Theorem 2.6. Assume that b = −2
√
−a and let {xn}∞n=−1 be a solution of

equation (1) such that (x0, x−1) /∈ S . The following statements are true.
(1) If a ≤ −1, then {xn}∞n=−1 converges to zero.
(2) If a > −1, then {xn}∞n=−1 is unbounded.

Proof. Let {xn}∞n=−1 be a solution of equation (1) such that (x0, x−1) /∈ S.
If b = −2

√
−a, then λ = −

√
−a is a repeated root of equation (3). That is

xn =
1

c1(−a)
n
2 + c2(−a)

n
2 n
.

When a ≤ −1, we have that (−a)nn diverges to ∞ as n → ∞. Then
{xn}∞n=−1 converges to zero, from which (1) follows. When a > −1, we have
that (−a)nn converges to zero, from which (2) follows. �

Theorem 2.7. Assume that 0 > b > −2
√
−a and let {xn}∞n=−1 be a solution

of equation (1) such that (x0, x−1) /∈ S . The following statements are true.
(1) If a < −1, then {xn}∞n=−1 converges to zero.
(2) If a = −1, then {xn}∞n=−1 is bounded.
(3) If a > −1, then {xn}∞n=−1 is unbounded.

Proof. Let {xn}∞n=−1 be a solution of equation (1) such that (x0, x−1) /∈ S.
If 0 > b > −2

√
−a, then the roots of equation (3) are complex and |λ±| =√

−a. Then

xn =
1

(−a)
n
2 (c1 cosnθ + c2 sinnθ)

,

where θ = tan−1
√
−b2−4a
b ∈ ]π2 , π[. When a < −1, we have that (−a)n

diverges to∞ as n→∞. Then {xn}∞n=−1 converges to zero, from which (1)
follows. When a = −1, we have that

xn =
1

c1 cosnθ + c2 sinnθ
,

θ = tan−1
√
−b2+4
b . As (x0, x−1) /∈ F , we have that for any n ∈ N

c1 cosnθ + c2 sinnθ 6= 0.
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This means that, there exists ε > 0 such that |c1 cosnθ+ c2 sinnθ| > ε, from
which (2) follows. When a > −1, we have that (−a)n converges to zero,
from which (3) follows. �

Theorem 2.8. Assume that a = −1 and 0 > b > −2, and let {xn}∞n=−1 be
a solution of equation (1) such that (x0, x−1) /∈ F . If θ = p

qπ, where p and
q are positive relatively prime integers such that q

2 < p < q, then {xn}∞n=−1
is a periodic solution with prime period 2q.

Proof. Let {xn}∞n=−1 be a solution of equation (1) such that (x0, x−1) /∈ F .
Clear that, if a = −1 and −2 < b < 0, the angle θ = p

qπ ∈]
π
2 , π[.

The solution (7) becomes

xn =
x0x−1 sin θ

(x−1 sin(n+ 1)θ − x0 sinnθ)
.

Then

xn+2q =
x0x−1 sin θ

(x−1sin(n+ 2q + 1)θ − x0 sin(n+ 2q)θ)

=
x0x−1 sin θ

(x−1 sin((n+ 1)θ + 2qθ)− x0 sin(nθ + 2qθ)

=
x0x−1 sin θ

(x−1 sin((n+ 1)θ + 2pπ)− x0 sin(nθ + 2pπ)

= xn.

This completes the proof. �

Example (1). Figure 1. shows that if a = 0.2, b = 0.8 (a + b = 1). Then
the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = −0.5
and x0 = 1 converges to 1

c2
= 2.

Example (2). Figure 2. shows that if a = 2, b = 1, (b = a − 1). Then
the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = −2 and
x0 = 2 (c2 = 0) is periodic with prime period two.
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Figure 1. xn+1 =
xnxn−1

0.2xn+0.8xn−1
.
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Figure 2. xn+1 =
xnxn−1

2xn+xn−1
.
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Figure 3. xn+1 =
xnxn−1

−2xn−3xn−1
.
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Figure 4. xn+1 =
xnxn−1

−0.5xn−1.5xn−1
.
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Figure 5. xn+1 =
xnxn−1

−2xn−1.5xn−1
.
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Figure 6. xn+1 =
xnxn−1

−0.25xn−0.5xn−1
.

Example (3). Figure 3. shows that if a = −2, b = −3 (b = a − 1). Then
the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = 1.1 and
x0 = 1.2 converges to zero.

Example (4). Figure 4. shows that if a = −0.5, b = −1.5, (b = a−1). Then
the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = −1.5 and
x0 = 0.1 converges to a period-2 solution.

Example (5). Figure 5. shows that if a = −2, b = −1.5 (0 > b > −2
√
−a ≈

−2.8284 and a < −1). Then the solution {xn}∞n=−1 of equation (1) with ini-
tial conditions x−1 = 2.5 and x0 = −1.1 converges to zero.

Example (6). Figure 6. shows that if a = −0.25, b = −0.5, 0 > b >
−2
√
−a = −1 and a > −1). Then the solution {xn}∞n=−1 of equation (1)

with initial conditions x−1 = 1.5 and x0 = −2.1 is unbounded.
Example (7). Figure 7. shows that if a = −1, b = −5−

√
5

2 (b2 + 4a < 0).
Then the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = 2.7

and x0 = −0.4 is periodic with prime period 20. Note that θ = 7
10π.
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Example (8). Figure 8. shows that if a = −1, b = −3−
√
5

2 (b2 + 4a < 0).
Then the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 =

−2.2 and x0 = −0.5 is periodic with prime period 10. Note that θ = 3
5π.
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Figure 7. xn+1 =
xnxn−1

−xn− 5−
√
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Figure 8. xn+1 =
xnxn−1

−xn− 3−
√
5

2
xn−1

.

3. Case ab < 0

3.1. Case a > 0 and b < 0. In this case b2 + 4a > 0, that is the two roots
λ− and λ+ are real such that λ− < b

2 < 0 < λ+ and |λ−| > |λ+|.

Theorem 3.1. Assume that (x0, x−1) /∈ S and let {xn}∞n=−1 be a solution
of equation (1). The following statements are true.

(1) If b < a− 1, then {xn}∞n=−1 is converges to zero.
(2) If b = a− 1, then {xn}∞n=−1 converges to a period-2 solution.
(3) If b > a− 1, then {xn}∞n=−1 is unbounded.

Proof. Let {xn}∞n=−1 be a solution of equation (1) such that (x0, x−1) /∈ S.
When b < a− 1, we have that λ− < −1. It follows that

xn =
1

λn−(c1 + c2(
λ+
λ−

)n)
→ 0 as n→∞,

from which (1) follows.
When b = a− 1, we have that λ− = −1. Then xn converges to the period-2
solution {..., 1

c1
,− 1

c1
, 1
c1
,− 1

c1
, ...}, from which (2) follows.

When b > a − 1, we have that 0 > λ− > −1. If a > −1, then −1 < λ− <
λ+ < 0 from which (3) follows.
This completes the proof. �

Theorem 3.2. Assume that b = a − 1. Then there exist periodic solutions
of prime period two.

Proof. Assume that b = a − 1 and let (x0, x−1) /∈ F . It is sufficient to see
that if c2=0, then c1 = 1

x0
and the result follows. �
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3.2. Case a < 0 and b > 0. In this case, b2 + 4a can be negative, zero or
a positive real number. If b2 + 4a > 0, then the roots of equation (3) are
positive such that 0 < λ− < λ+.

Theorem 3.3. Assume that (x0, x−1) /∈ S and let {xn}∞n=−1 be a solution
of equation (1). The following statements are true.

(1) If b > 1− a, then {xn}∞n=−1 is converges to zero.
(2) If b = 1− a, then we have the following:

(a) If a > −1, then {xn}∞n=−1 converges to 1
c2

.
(b) If a < −1, then {xn}∞n=−1 converges to zero.

(3) If 2
√
−a < b < 1− a, then we have the following:

(a) If a > −1, then {xn}∞n=−1 is unbounded.
(b) If a < −1, then {xn}∞n=−1 converges to zero.

Proof. Let {xn}∞n=−1 be a solution of equation (1) such that (x0, x−1) /∈ S.
When b > 1− a, we have that λ− < 1 < λ+. It follows that

xn =
1

λn+(c1(
λ−
λ+

)n + c2)
→ 0 as n→∞,

from which (1) follows.
When a+ b = 1, λ = 1 is a root for equation (3).
If a > −1, then λ− = −a and λ+ = 1. Now

xn =
1

(c1λn− + c2)
→ 1

c2
as n→∞,

from which (2a) follows. If a < −1, then λ− = 1 and λ+ = −a, from which
(2b) follows.
Note that, when a+ b = 1, b2 + 4a > 0 when a 6= −1.
When 2

√
−a < b < 1− a, we have either 0 < λ− < λ+ < 1 or 1 < λ− < λ+.

If a > −1, we have that 0 < λ− < λ+ < 1, from which (3a) follows.
If a < −1, then 1 < λ− < λ+, from which (3b) follows.
This completes the proof. �

Theorem 3.4. Assume that 0 < b < 2
√
−a and let {xn}∞n=−1 be a solution

of equation (1) such that (x0, x−1) /∈ S . The following statements are true.
(1) If a < −1, then {xn}∞n=−1 converges to zero.
(2) If a = −1, then {xn}∞n=−1 is bounded.
(3) If a > −1, then {xn}∞n=−1 is unbounded.

Proof. Let {xn}∞n=−1 be a solution of equation (1) such that (x0, x−1) /∈ S.
It is sufficient to see that, if 0 < b < 2

√
−a, then the roots of equation (3)

are complex such that |λ±| =
√
−a and θ = tan−1

√
−b2−4a
b ∈]0, π2 [. The rest

of the proof is similar to that of Theorem (2.7) and will be omitted. �

Theorem 3.5. Assume that a = −1 and 0 > b > −2, and let {xn}∞n=−1 be
a solution of equation (1) such that (x0, x−1) /∈ F . If θ = p

qπ, where p and
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q are positive relatively prime integers such that 0 < p < q
2 , then {xn}∞n=−1

is a periodic solution with prime period 2q.

Proof. The proof is similar to that of Theorem (2.8) and will be omitted. �

Example (9). Figure 9. shows that if a = 0.9, b = −0.1 (b = a− 1). Then
the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = 2.5 and
x0 = 2.1 converges to period-2 solution.

Example (10). Figure 10. shows that if a = −0.25, b = 1.1, (1 = 2
√
−a <

b < 1− a = 1.25). Then the solution {xn}∞n=−1 of equation (1) with initial
conditions x−1 = 2.5 and x0 = −1.1 is unbounded.
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Figure 9. xn+1 =
xnxn−1

0.9xn−0.1xn−1
.
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Figure 10. xn+1 =
xnxn−1

−0.25xn+1.1xn−1
.

Example (11). Figure 11. shows that if a = −1, b = −1 (b2 + 4a < 0).
Then the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = 2.5
and x0 = −1.1 is a period-3 solution.

Example (12). Figure 12. shows that if a = −1, b = 1, (b2+4a < 0). Then
the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = 2.5 and
x0 = −1.1 is a period-6 solution.
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Figure 11. xn+1 =
xnxn−1

−xn−xn−1
.
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Figure 12. xn+1 =
xnxn−1

−xn+xn−1
.
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Figure 13. xn+1 =
xnxn−1

−xn+
√
2xn−1

.
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Figure 14. xn+1 =
xnxn−1

−xn+
√
3xn−1

.

Example (13). Figure 13. shows that if a = −1, b =
√
2 (b2 + 4a < 0).

Then the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = 1

and x0 = −2 is periodic with prime period 8. Note that θ = 1
4π.

Example (14). Figure 14. shows that if a = −1, b =
√
3 (b2 + 4a < 0).

Then the solution {xn}∞n=−1 of equation (1) with initial conditions x−1 = −1
and x0 = 2 is periodic with prime period 12. Note that θ = 1

6π.
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